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ABSTRACT

This paper presents a fuzzy-logic approach to the synthesis of synchronization control for a

magnetically suspended rotor system. The synchronization control enables a whirling rotor to

undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effects

that degrade the stability of rotor systems when spinning at high speed. The control system features

a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system is

trained through fuzzy rules to minimize the differential errors between four bearing axes so that an

error along one bearing axis can affect the overall control loop for the motion synchronization.

Numerical simulations of synchronization control for the magnetically suspended rotor system are

presented to show the effectiveness of the present approach.

INTRODUCTION

Active magnetic bearings, which permit non-contact suspension of levitated objects, have

received increasing attention in recent years. The contactless nature of magnetic beatings brings

many advantages over the conventional bearings, such as energy efficiency, low wear, longer life

span, absence of lubrication and mechanical maintenance, and wide range of working temperature.

Also, closed-loop con,.rol of magnetic bearings enables active vibration suppression and on-line

control of bearing stiffness. Studies [1-3] performed so far indicate that magnetic bearings have been

very effectively used for the suspension of high-speed rotating machines, essentially at speeds over

10,000 rpm. For instance, NASA has employed magnetic beatings to support the high-speed

turbopumps for use in space shuttle main engines. On the other hand, magnetic bearings have been

installed on momentum wheels and CMG devices at NASA [ 1-5] as the gyrotorquers for the attitude

control and momentum arrangement of space structures. Other industrial applications of actively

controlled magnetic bearings include high-speed centrifuges, magnetic spindles, vacuum pumps,

micromachines, etc. [1-2].

Magnetic bearing dynamics are inherently nonlinear as the result of nonlinearities in the

electromagnetic fields and force coupling effects mnong the various axes. These nonlinear

characteristics require an increase in the complexity of modeling, estimation, and control of the
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magnetic bearings. In addition, the control performance of magnetic bearings is very sensitive to

unpredictable disturbances and the plant uncertainties, wherein the classical feedback control does

not seem entirely effective and satisfactory for such purposes. Various control strategies have been

studied for the adaptive control of magnetic bearings when disturbed with uncertain dynamics or

unknown parameters. Some of them reviewed as references here are adaptive control [6], time delay

control [7], sliding mode control [3], and learning control [8]. The investigation of these papers was

aimed at using different approaches to adapt the respective controller to changes in the parameters of

magnetic bearings so as to continuously strive to optimize the control performance. Once a

controller is activated, the magnetically suspended rotor will experience the conical and translatory

whirl modes when whirling about the central axis as shown in Fig. 1. The conical whirl mode gives

rise to the unbalanced torque's twisting the rotor which in turn triggers the gyroscopic effects, and

thereby effecting the instability of the rotor system if not properly controlled. However, the

translatory whirl mode yields the synchronous motion along the radial directions, important for a

spinning rotor especially for use in high-precision, fine-cutting process. The purpose of this paper is

thus to explore the synchronization problem of the magnetically suspended rotor system from the

viewpoint of fuzzy-logic control [9,10].
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Figure 1: Whirl modes of a rigid rotor in magnetic bearings

In this paper, we introduce a fuzzy-logic scheme for the adaptive synchronization of the

magnetic bearing system, which consists of a local disturbance compensator and a coupling controller

for each bearing axis. The local compensator balances the rotor against disturbances, while the

576



coupling control responds to the synchronization error, i.e., the difference between the two motion

errors along the bearing axes. The fuzzy inference system is trained through fuzzy rules for the

synchronization control, in which each fuzzy controller fuzzifies the inputs by the trapezoidal

membership function, applies an "AND" logic operator to handle multiple fuzzified inputs, shapes

the consequent set by a fuzzy associated memory (FAM) matrix, and aggregates all outputs during

defuzzifying. The defuzzification method is the centroid computation which involves the

computation of centroid values of regions defined by overlapping membership functions.

The content of this paper will be outlined as follows: First, the description of the system

dynamics is presented for a rotor system equipped with magnetic bearings. Then, the derivation of

the fuzzy controller is detailed and applied to the synthesis of synchronization control for rejecting

gyroscopic effects as well as disturbances from the rotor system. Finally, simulation results are

presented for discussion.

SYSTEM DYNAMICS

In this section, the dynamics of a rotor system and magnetic bearings are studied and

incorporated into a rotor-bearing system. This system is composed of a disk mounted on a rigid

shaft which is actively positioned in the radial directions through the use of the magnetic bearings

located at two shaft ends. This paper considers the utilization of radial magnetic bearings as an

actuating device onboard the rotor system. Let's start with the description of rotor dynamics to

serve as the background for the investigation of this paper.
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Figure 2: A rigid rotor system with actively controlled magnetic bearings
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As demonstratedby Fig. 2, therotor is modeledasadisk constantlyspinningabout the principal

z-axis of the shaft while simultaneously suspended by two sets of magnetic bearings. Assume xc and

Yc denote the displacements of the center of mass of the rotor along the x and y directions as shown in

Fig. 2, and _ and 0 indicate (roll and pitch) angles of rotation about the x and y axes, respectively.

These angles are normally assumed to be very small due to the restriction of narrow air gap within

the magnetic bearings. The equations of motion of this rotor-bearing system can then be derived in

the following matrix form.

[i°°m O "

0 L_
0 0 L_

-at- Izz03 Ii°°!][i1°i]r,-1oo o o 1 /Y-_

o o = -b o L_::O 1 0 -a

(1)

where m is the rotor mass, I,, is the moment-of-inertia of the rotor in the radial direction, I,_ is the

moment-of-inertia about the z-axis, and o_ is the spinning rate of the rotor about the z-axis. The

second term in Eq. (1) can readily be recognized as the gyroscopic momenta depending on the

spinning rate to.

As for the input in Eq. (1), thefxi's andfyi's represent the magnetic forces provided by two sets

of magnetic bearings each made of an eight pole electromagnet. The electromagnets, when charged,

are capable of inducing coupled magnetic forces along the x and y axes. The coupling effects of

magnetic forces across two axes can be neglected without loss of generality so that the magnetic force

along each axis is derived independently of the displacement and current along the other axis. Figure 2

demonstrates the magnetic bearings #1 and #2 located at distances a and b from the disk. Assume

that the control current signals along the x-axis are denoted by ixt and ix2 for the bearings #1 and #2,

respectively, while those along the y-axis indicated by iy; and iy2, accordingly. Also, the

displacements of the shaft from the bearing center are described by xi and yi at two bearing ends.

Based on Maxwell's law, the magnetic forces due to the electromagnet along the x and y axes can be

modeled by:

fx, = O L(ho_X,)_ - (ho+z,)zj f_2 = G' [ {ho-_) 2 (ho+_) "_J '

[_ _1 _ r_ _1 o
f_, = G' [_ho-_,_)_-- (ho+_,)_1 -- _-_mg, f,,_ = G L(ho__,21_-- _ho+_)_/ -- Z-_mg

(2)

where ho is the nominal air gap at equilibrium and G is an electromagnet constant. The I 0 is a bias

current in Eq. (2), whereas the bias currents Ii and I2 account for balancing the weight of the disk and

they can be written by •

ho _[GI2o ( b._.b__ ho GI2o a
I, _ v_ _ -_o + a + b)m9 _.d z_- _ \ -_o + (-FUg)mg

(3)
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Sincetheair gapisrestrictedto bevery narrow, the magnetic forces in Eq. (2) can be linearized and

arranged into a matrix form given by:

f_
f_2

[_ 0 0 0

2GIo 2 0 0

- o o
0 0 1+_

z.:_2

$I/2

o ol xl2GI2o 2 0 0 x2

_&V 0 Yl
+ _ 0 l + _toj (&V

0 0 1 + _IoJ Y2

(4)

which decouples control currents and displacements for the magnetic forces. Moreover, the

following relations are generated from the geometry illustrated in Fig. 2.

0 - z_)=z_ = _,+b and (5)
vo = _ ¢ = -}(vo- y,)

a+b

Substituting the disk variables (xc , y,: , 0, ¢) in Eq. (1) with those relative to the bearing axes yields:

= C_ + Kx + Bu (6)

where the state variable vector is given by x = [xz, x2, yl • Y2 ]T , and the input vector by

u = [i,a, i_, iyl, iy2 IT. In Eq. (6), the damping, stiffness, and input matrices are:

AV ]zz

c = (_-7-_)(_ )

2G
K---

ho_

0

0

a

-b
• 2 1 a 2
2Io(_ + 7X )

2io2(_ abI.)

0

0

-2Io(- +
2Io(-_ ab1_ )

0

0

0 a --a 1

0 -b b

-a 0 0 '

b 0 0

2/02(, .b) 0 0Irr

2 1 b2
2I_(_ +/-77 ) 0 0

0 (12o + l/km + _rr ) (I2o + 2]_7_ lrr

i2_t 1 ab 1 b20 (12o+ ,,,_ _) (I2o+ I_)(-_+ _)

2Io(,_ ,.'s ) 0 0 ))]j

2Io( + o o
,,2 I 1 abo (L + I,)(_ + _) (/o + 2)(,_ _.

I 1 ab b 20 (Io+ ,)(_ ) (Io+I2)(-_+

Equation (6) is the model of a rotor system equipped with magnetic bearings as necessary for the

derivation of the fuzzy-based synchronization controller in the next section.
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CONTROL DESIGN

In this paper, the control objective of the magnetic besting system is to synchronize the motion

of a suspended rotor during whirling, so as to insure the rotor system against the unbalance and

gyrostatics. In doing so, we present a synchronization control concept that makes concunent use of

a fuzzy-logic control and a coupling control, and assesses its applicability to the magnetic control of

the rotor system. An integrated cross-coupled, fuzzy-based controller is developed with the

respective merits of each particular control included. First, it is known that fuzzy control is very

effective in adapting nonlinear systems to the plant uncertainties and unpredictable disturbances.

Then, adding the coupling control in conjunction with the fuzzy adaptation can enable the resulting

control system to perform the motion synchronization for the multi-axis system.

Figure 3 shows the control block diagram of a fuzzy-based synchronization controller for the

magnetically suspended rotor system. The fuzzy inference system consists of four local

compensators that are cross-coupled to one another by using three coupling controllers to

compromise the differential errors between the bearing axes. The local compensators are applied to

the four bearing coordinates in balancing the rotor around the center of rotation. The coupling

controllers link the xl - xz, Yl - Yz, and xl - Yl axes, respectively; in response to the

synchronization errors as defined by:

= xx(t) - yx(t),
= ia(t) -
=

(7)

which in fact represent the differences between the two motion errors along the bearing axes. The

first two equations in Eq. (7) attempt to synchronize the motion of the rotor in parallel to the

directions of x_ - x2 and yl - Y2 respectively, whereas the last equation cross-couples that between

the xl - Y2 axes. It Can be seen that each controller collects the information of displacement and

velocity of the rotor as inputs to the fuzzy system that outputs a control current to the magnetic

bearings. Also, note that the synchronization errors drive the two sets of local fuzzy controllers in

opposite directions, which will result in fast removal of the synchronization errors.
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Figure 3: Control Block diagram of a fuzzy-based synchronization control

The fuzzy inference system is guided through the fuzzy rules in order to train the entire control

system as for the motion synchronization. In this paper, the fuzzy controller fuzzifies the inputs

by a trapezoidal membership function, applies "AND" logic operator to sort out multiple fuzzified

inputs, shapes the consequent set by a FAM matrix, and aggregates all outputs during defuzzifying.

Figure 4 demonstrates the membership functions and FAM matrices for the displacement and

velocity of the rotor in each bearing axis. Three fuzzy sets that are specified for the input variables

(x], _l, e_, _,,, etc.) are "Positive" (P), "Zero" (ZE), and "Negative" (N), and five fuzzy sets are

assigned for the output variables (ixl, ix2, iyl, iy2) including "Positive Large" (PL), "Positive Small"

(PS), "Zero" (ZE), "Negative Small" (NS), and "Negative Large" (NL). Then, the fuzzy intersection

(AND) operator is applied to aggregate two membership grades such that:
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t,.p,,.(x,, y,) = _,p(x,)o t,N(y,) = .,i,,[,p(x,), I,N(y,)] (s)

where UP(xl) stands for the value of a membership function for the input xl according to the fuzzy

set "Positive". The outcome from Eq. (8) is used to weight each entry in the FAM matrix, for

instance:

w,>LCx,,._,)= _,_(_,) e l,,_(._,) (9)

for the first entry in the xl - ;q FAM matrix. As for the output defuzzified from the fuzzy system,

the centroid computation is conducted to calculate the centroid values of regions defined by

overlapping membership functions. For instance, for the xl - _l fuzzy system the output is

defuzzified by:

{Membership Functions J ( FAM Matrices ]
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Figure 4: Input/output membership functions and FAM matrices
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1
ixa -- E Wi (WpL " PL + wps" PS + wZE • ZE + wNS • NS + WNL" NL)

(10)

which provides the control current for the xl axis. In this way, the control currents for the other

axes can be defuzzified from the respective fuzzy system. Note that the total control current for

each bearing axis must include those from the coupling controllers, although they are not explicitly

expressed here.

The cross-coupled, fuzzy-logic control synthesis is then accomplished in this section for the

synchronization control design onboard the magnetic bearing system. A closed-loop system is then

obtained for the implementation of the numerical simulations, which will be the subject in the

following section.

SIMULATION RESULTS

The model parameters of the rotor system with magnetic bearings for simulations are summarized

in Table 1. A fuzzy-based synchronization controller has been applied to the rotor-bearing system

to implement 2-second simulations subject to: (i) a sequence of impulsive disturbances on the four

axes of bearings #1 and #2, and (ii) the sudden change of speed on the spinning rotor, respectively.

Table 1: Model parameters of a rotor-bearing system

Disk: Magnetic Bearings:

m=0.75 Kg G=l.2xl0 -4 N-m2/Amp 2

Ir_=2.5×10 -a Kg/m 4 ho=l.5 ×10 -3. m

/_z=5.0×10 -a Kg/m 4 Io=l.O Amp

e=0.01 m I1 =1.0361 Amp

w=100.0 rad/sec /2=1.0361 Amp
a=0.5 m b=0.5 m

Fuzzy Control Parameters:

PL=0.01 Amp PS=0.005 Amp

ZE=0.0002 Amp NS=-0.005 Amp

NL=-0.01 Amp

Figure 5 illustrates the numerical results of a control simulation along with four force impulses

imposed on the four axes of beating #1 and #2. The forces are of magnitude +/-10.0 N acting on

axes xl, x2, Yl, and y2 around 0.5, 0.6, 1.0, and 1.1 seconds, respectively. It can be seen in

Figs. 5(a) - 5(d) that the four displacements respond synchronously to each other under the

synchronization control. This implies the interactive dynamics reaction between the bearing axes due

to the coupling control law. Above all, the peak magnitudes in Figs. 5(a) - 5(d) are considerably

reduced within the range of 0.1 ram. Furthermore, the attendant oscillations are damped out within

0.4 seconds. Therefore, one disturbed axis can rapidly be recovered by other undisturbed axes in the

presence of the fuzzy-based synchronization control. Figures 5(e) and 5(0 show the responses of

the control currents. As can be seen, the amplitudes of the currents are restricted within the range of

0.015 Amp.
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Figure 5: Simulation results subjected to impulsive disturbances

Another simulation demonstrates the capability of the proposed controller in handling the

parametric change of the rotor-bearing system. Assume that the spinning speed of the rotor is

suddenly changed from 1000.0 to 1010.0 rad/s around 0.4 seconds. The corresponding results are

shown in Figure 6. Figures 6(a) - 6(d) show the transient responses of the displacements that are

greatly eliminated with fast convergence. The corresponding time-histories of four control currents

are illustrated in Figs. 6(e) and 6(0, respectively.
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Figure 6: Simulation results subjected to the change of rotor speed

The motion of a whirling disk, under the presence of disturbances and plant parameter variations,

has been shown to converge to the translatory whirl mode for fast recovery when the fuzzy-based

synchronization control law is invoked. The errors appearing in synchronization have been

effectively suppressed through the fuzzy control system. The simulation results in Figs. 5 and 6

thus validate the potential applicability of the proposed control design for the high-speed magnetic

bearing system.
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CONCLUSIONS

Theproblem of synchronizing the rotor motion in the magnetic bearings has been proposed and

analyzed under fuzzy-logic control. An investigation of a fuzzy-based synchronization controller

has been conducted for the magnetically suspended rotor system subject to disturbances and

parametric variations. The fuzzy inference system was constructed by four local disturbance

compensators cross-coupled to one another by using three coupling controllers in order to

compromise the differential errors between the beating axes. The stability of a rotor system can

greatly be improved due to the elimination of unbalanced momenta and gyroscopic effects. The

fuzzy-logic controller as designed through the synchronization process has shown to be suitable for

the magnetic bearing device in rejecting the disturbances and compensating for the parametric

changes. Simulation results demonstrated the effectiveness of the current approach in motion

synchronization for the rotor system in cooperation with magnetic bearings. Much work needs to be

done before one contemplates to evaluate the proposed strategy on a real-board prototype. They

include the robustness issue, actual hardware cost-effectiveness, and power efficiency, among others.

We intend to address these aspects in the future.
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